Modeling and Visualization for Imaging of Subsurface Damage

Neil Goldfine, Scott Denenberg, Brian Manning, Zachary Thomas JENTEK Sensors, Inc., 110-1 Clematis Avenue, Waltham, MA 02453-7013

Rasheed Al Rushaid, Frederick Haught Al Rushaid Technologies Co., Al Turki Business Park, Office Villa #4; 7244 King Saud Road, Ad Doha Al Janubiyah, Dhahran 34455, Kingdom of Saudi Arabia

Copyright © 2015 JENTEK Sensors Slide 1 All Rights Reserved.

Outline

- Practical Applications
- Problem Definitions: From Simple to Complex
- Sensing Methodology
- HyperLattice Databases
- Example Results
- Summary

Copyright © 2015 JENTEK Sensors Slide 2 All Rights Reserved.

Practical Applications

- 1. Internal and external corrosion imaging through
 - Insulation
 - Concrete with wire mesh (fireproofing, weight coat)
 - Other coatings
- 2. Hydrogen blister imaging (*through cladding overlay*)
- 3. Buried crack detection
- 4. Coating characterization
- 5. In-line inspection for surface and subsurface defects
- 6. Stress mapping from outside and inside pipelines, structures

Problem Definitions: from simple to complex

Sensing Methodology

1. Sensors: MWM[®]-Arrays

 Paradigm shift in sensor design (first priority is predictable response based on physicsbased modeling)

- 3. GridStation Software using HyperLattices[®]
- Rapid, autonomous data analysis Performs multivariate inverse method (MIM) using precomputed databases
 - Defect Images
 - Performance Diagnostics
 - Noise Suppression

2. Next Generation Electronics

- 10x signal-to-noise improvement
- Very low frequencies (deep penetration)
- Crack detection through up to 0.5 inches of material
- Reduced drift

Analysis

Solve Multiple Unknown Problems MIM

Definition of Real and Imaginary Parts of the complex Transimpedance Z=v/jωi

ω=2πf

- GridStation Lattices for MR-MWM-Array wall loss imaging
- Used for external and internal wall loss imaging

 a) 2- Unknowns: conductivity (σ) and lift-off (h), with magnetic permeability (μ) assumed constant

 a) 2- Unknowns: magnetic permeability (μ) and lift-off (h), with conductivity (σ) assumed constant

b) 3- Unknowns: coating conductivity, coating thickness, and lift-off, using hierarchical method.
Grid is for conductivity and thickness of the coating.
The lift-off is determined at a higher frequency, taken simultaneously.

λ=12.7 mm ; air gap=0.40 mm ; freq=158 kHz

c) 3-Unknowns: coating thickness, coating conductivity, and lift-off. Two frequencies are needed.

Each frequency provides two equations to solve for up to two unknowns. Two frequencies is enough for 3 or 4 unknowns.

d) 3- Unknowns: cladding thickness, blister gap, and lift-off

e) 3- Unknowns: pipe wall permeability, pipe wall thickness, and lift-off

Scanners and Implementation in the plant

Sensor Selection

- Decay rate determined by skin depth at high frequency and sensor dimensions at low frequency
- Large dimensions needed for thick coatings/insulation
- Low frequencies needed to penetrate through steel pipe wall

(f, left) 5- Unknowns:

- 1. pipe wall permeability,
- 2. pipe wall thickness,
- 3. weather jacket thickness (assume conductivity)
- 4. insulation thickness
- 5. lift-off (distance to weather jacket)

Can't visualize easily

Example: Corrosion Imaging on Refinery Piping

Inspection was performed with the pipe in production at high temperature

CUI Performance Evaluation Results (July 2013)

Internal Corrosion – Sample A

16" Schedule 80 (0.500" wall)2" insulation with aluminum weather jacket0.100" max wall loss (20%) over 20-25 inches (full circumference)

Internal Corrosion – Sample B

- 16" Schedule 80 (0.500" wall)
- 2" insulation with aluminum weather jacket
- 0.175" max wall loss (35%) over 20-25 inches (full circumference)

- (f, right) 5- Unknowns:
 - 1. vessel wall permeability,
 - 2. vessel wall thickness,
 - 3., 4., permeability and position of wire mesh (simple layer)
 - 5. vessel wall permeability

Can't visualize easily

Summary

- 1. Internal and external corrosion imaging through
 - Insulation _
 - Concrete with wire mesh -(fireproofing, weight coat)
 - Other coatings -
- 2. Hydrogen blister imaging (through cladding overlay)
- 3. Buried crack detection
- 4. Coating characterization
- 5. In-line inspection for surface and subsurface defects
- 6. Stress mapping from outside and inside pipelines, structures

Copyright © 2015 JENTEK Sensors Slide 19 All Rights Reserved.

